
Learning Trustworthy Behaviors Using an
Inverse Trust Metric

Michael W. Floyd, Michael Drinkwater, and David W. Aha

Abstract The addition of a robot to a human team can be beneficial if the robot
can perform important tasks, provide additional skills, or otherwise help the team
achieve its goals. However, if the human team members do not trust the robot they
may underutilize it or excessively monitor its behavior. We present an algorithm
that allows a robot to estimate its trustworthiness based on interactions with a team
member and adapt its behavior in an attempt to increase its trustworthiness. The
robot is able to learn as it performs behavior adaptation and increase the efficiency
of future adaptation. We compare our approach for inverse trust estimation and be-
havior adaptation to a variant that does not learn. Our results, in a simulated robotics
environment, show that both approaches can identify trustworthy behaviors but the
learning approach does so significantly faster.

Key words: inverse trust, behavior adaptation, case-based reasoning

1 Introduction

The addition of a robot to a human team can be beneficial if the robot improves the
team’s sensory capabilities, performs new tasks, or allows for operation in harsh en-

Michael W. Floyd
Knexus Research Corporation, Springfield, Virginia, USA
e-mail: michael.floyd@knexusresearch.com

Michael Drinkwater
Knexus Research Corporation, Springfield, Virginia, USA
e-mail: michael.drinkwater@knexusresearch.com

David W. Aha
Navy Center for Applied Research in Artificial Intelligence, Naval Research Laboratory (Code
5514), Washington, DC, USA
e-mail: david.aha@nrl.navy.mil

1



2 Michael W. Floyd, Michael Drinkwater, and David W. Aha

vironments (e.g., rough terrain or dangerous situations). This may allow the team to
better achieve their goals, improve team productivity, or reduce the risk to humans.
In some situations, it may not be possible to achieve team goals or guarantee human
safety without the robot. However, in order to adequately use the robot the human
teammates will need to trust it.

The need to trust a robot teammate is especially true when the robot operates in
an autonomous or semi-autonomous manner. In these situations, a human operator
would issue a command or delegate a task to the robot and the robot would act
on its own to complete its assignment. A lack of trust in the robot could result
in the operator underutilizing the robot (i.e., not assigning it tasks it is capable of
completing), excessively monitoring the robot’s actions, or not using the robot at all
(Oleson et al, 2011). Any of these issues could result in an increased workload for
human teammates or the possibility of the team being unable to achieve their goal.

One possibility would be to design a robot that is guaranteed to operate in a trust-
worthy manner. However, this may be impractical if the robot is expected to han-
dle changes in operators, environments, or mission contexts. These changes would
make it impractical to elicit a complete set of rules for trustworthy behavior. Ad-
ditionally, the way in which an operator measures its trust in the robot may be
user-dependent, task-dependent, or time-varying (Desai et al, 2013). For example,
if the robot received a command to navigate between two locations in an urban en-
vironment, one operators might prefer the task be performed as quickly as possible
whereas another might prefer the task be performed as safely as possible (e.g., not
driving down a road with heavy automobile traffic or potholes). Each of these oper-
ators has distinct preferences for how the robot should perform the task, which may
conflict, and these preferences will influence how trustworthy they find the robot’s
behavior. Even if these preferences were known in advance, a change in context
could influence the operator’s preferences and what is considered trustworthy be-
havior. The operator who preferred the task to be performed quickly would likely
change their preference if the robot was transporting hazardous material, whereas
the operator who preferred safety would likely change their preference in an emer-
gency situation.

For a robot to behave in a trustworthy manner regardless of the operator, en-
vironment, or context, it must be able to evaluate its trustworthiness and adapt its
behavior accordingly. The workload of the human teammates or time-critical na-
ture of the team’s mission may make in difficult to get explicit feedback from the
operator about the robot’s trustworthiness. Instead, the robot will use information
from the standard interactions it has with the operator (i.e., being assigned tasks
and performing those tasks). Such an estimate, which we refer to as an inverse trust
estimate, differs from traditional computation trust metrics in that it measures how
much trust another agent has in the robot rather than how much trust the robot has in
another agent. Additionally, the inverse trust metric does not directly measure trust,
since the information necessary to compute such a metric is internal to the operator,
but instead estimates trust based on observable factors that are known to influence
trust. In this chapter we examine how a robot can estimate the trust an operator



Learning Trustworthy Behaviors Using an Inverse Trust Metric 3

has in it, adapt its behavior to become more trustworthy, and learn from previous
adaptations so it can find trustworthy behaviors more quickly in the future.

In the remainder of this chapter we describe our inverse trust estimate and how
the robot uses it to adapt its behavior. In Section 2 we examine related work on
human-robot trust and adapting to user preferences. We define the robot’s behavior
and the aspects that it can modify in Section 3. Section 4 presents the inverse trust
metric and Section 5 describes how that metric is used by the robot to guide behavior
adaptation. An evaluation of trust-guided behavior adaption, in a simulated robotics
domain, is provided in Section 6 and reports evidence that it can efficiently adapt
the robot’s behavior to align with the operator’s preferences. Concluding remarks
and potential areas for future work are presented in Section 7.

2 Related Work

Traditional computational trust metrics are used to measure the trust an agent should
have in other agents (Sabater and Sierra, 2005). The agent determines another
agent’s trustworthiness based on prior interactions or using feedback from peers
(Esfandiari and Chandrasekharan, 2001). However, these metrics are not applicable
when attempting to determine how trustworthy an agent is in the eyes of another
agent. The primary reason for this is because the agent will not have all of the other
agent’s internal reasoning information available to it (e.g., outcome of past interac-
tions, peer feedback, past experiences, internal model of trust). Instead, the agent
will need to acquire a subset of this information and use that to infer trust. In the
remainder of this section we will examine factors influencing trust in human-robot
interaction and how agents can adapt their behavior to humans.

2.1 Human-Robot Trust

Factors that influence human-robot trust can be grouped into three main categories
(Oleson et al, 2011): robot-related factors (e.g., performance, physical attributes),
human-related factors (e.g., engagement, workload, self-confidence), and environ-
mental factors (e.g., group composition, culture, task type). While numerous factors
have been found to influence human-robot trust (e.g., Li et al (2010), Kiesler et al
(2008), Biros et al (2004)), a meta-analysis of numerous studies found the strongest
indicator of trust is the robot’s performance (Hancock et al, 2011). Similarly, user’s
identified performance as being among the most important factors they considered
in relation to automated cars and medical diagnosis (Carlson et al, 2014).

Kaniarasu et al (2012) have examined the topic of inverse trust and use an online,
performance-based measure to identify decreases in trust. Their measurement is
based on the number of times a human takes control of the robot or warns the robot it
is behaving poorly. They have extended this work to also identify increases in trust,



4 Michael W. Floyd, Michael Drinkwater, and David W. Aha

but it requires direct feedback from the operator at regular intervals (Kaniarasu et al,
2013). Saleh et al (2012) have also proposed a measure of inverse trust using a set of
expert-authored rules. However, if the robot does not have access to direct feedback
or predefined rules, these metrics would not be appropriate to use.

2.2 Behavior Adaptation

Shapiro and Shachter (2002) discuss why an agent with a reward function that is
similar to the utility of the user is desirable; it ensures the agent acts in the interests
of the user. The agent may need to perform behavior that appears to be sub-optimal
if it better aligns with the preferences of the user. Their work involves identifying the
underlying influences of the user’s utility and modifying the agent’s reward function
accordingly. This is similar to our own work in that the agent is willing to behave
sub-optimally in order to align with the user’s preferences, but our robot is not given
an explicit model of the user’s reasoning process.

Conversational recommender systems (McGinty and Smyth, 2003) use interac-
tions with a user to tailor recommendations to the user’s preferences. These systems
make initial recommendations and then iteratively improve the recommendations
through a dialog with the user. As the system learns the user’s preferences through
feedback, a model of the user is continuously refined. In addition to learn a user
preference model, conversational recommender systems can also learn preferences
for how the dialog and interactions should occur (Mahmood and Ricci, 2009). Sim-
ilarly, search systems have been developed that update their behavior based on a
user’s preferred search results (Chen et al, 2008). These systems use information
from the links a user clicks to infer their preferences and update search rankings
accordingly.

Learning interface agents assist users when performing a task (e.g., e-mail sort-
ing (Maes and Kozierok, 1993), schedule management (Horvitz, 1999), note taking
(Schlimmer and Hermens, 1993)). These systems observe how users perform cer-
tain tasks and learn their preferences. Since these agents are meant to be assistive,
rather than autonomous, they are able to interact with the user to get additional
information or verify if an action should be performed. Similar to conversational
recommender systems, learning interface agents are designed to be assistive with
one specific task. In contrast, our robot does not know in advance the specific task it
will be performing so it can not bias itself toward learning preferences for that task.

Preference-based planning (Baier and McIlraith, 2008) involves incorporating
user preferences into automated planning tasks. These preferences are usually de-
fined a priori but there has also been work to learn the planning preferences (Li et al,
2009). This approach learns the probability of a user performing actions based on
the previous plans that user has generated. In our work, that would be equivalent
to the operator controlling the robot and providing numerous demonstrations of the
task. Such an approach would not be practical if there were time constraints or the
operator did not have a fully constructed plan for how to perform the task. For ex-



Learning Trustworthy Behaviors Using an Inverse Trust Metric 5

ample, the operator might have general preferences for how the robot should move
between two locations without knowing the exact route it should take.

Our work also has similarities to other areas of learning during human-robot in-
teraction. When a robot learns from a human, it is often beneficial for the robot to
understand the environment from the perspective of the human (Berlin et al, 2006).
Breazeal et al (2009) have examined how a robot can learn from a cooperative hu-
man teacher by mapping its sensory inputs to how it estimates the human is viewing
the environment. This allows the robot to learn from the viewpoint of the teacher
and possibly discover information it would not have noticed from its own view-
point. This is similar to our own work since it involves inferring information about
the reasoning of a human. However, like preference-based planning, it involves ob-
serving a teacher demonstrate a specific task.

3 Agent Behavior

We assume that the robot, in addition to being autonomous or semi-autonomous, has
the ability to control and modify some aspects of its behavior. This could include se-
lecting among comparable algorithms (e.g., switching the path planning algorithm
it uses), modifying parameter values, or changing the data it uses (e.g., using an en-
vironment map from an alternate source). We call these the modifiable components
of the robot’s behavior.

We define each modifiable component i to have a set of selectable values Ci. If
the robot has m modifiable components, its current behavior B is a tuple containing
the currently selected value ci for each modifiable component (ci ∈ Ci):

B = 〈c1,c2, . . . ,cm〉

By changing one or more of these components, the robot can immediately influ-
ence its behavior by switching from its current behavior B to a new behavior Bnew.
These changes can occur multiple times over the course of operation, resulting in a
sequence of behaviors 〈B1,B2, . . . ,Bn〉 that have been used. Since the robot is mo-
tivated to perform trustworthy behavior, behavior changes will occur because the
current behavior B was found to be untrustworthy (or it anticipates the behavior will
be untrustworthy given a change in the team’s goals or mission context), at which
time we want the robot to perform what it believes to be a more trustworthy behav-
ior.

4 Inverse Trust Estimate

Traditional trust metrics, which measure how much trust an agent has in other
agents, use information related to previous interactions with those agents or feed-



6 Michael W. Floyd, Michael Drinkwater, and David W. Aha

back from others to compute trustworthiness (Sabater and Sierra, 2005). This infor-
mation is likely internal to the agent and would not be accessible to other agents
(both the agent whose trustworthiness is being measured and external observers). In
a robotics context, the robot would not have access to the information the operator
uses to measure the robot’s trustworthiness. If the robot wanted to estimate its own
trustworthiness, it would need a method to access the operator’s beliefs.

One option would be to elicit explicit feedback from the operator about the trust-
worthiness of the robot, either at run-time (Kaniarasu et al, 2013) or after the task has
been completed (Jian et al, 2000; Muir, 1987). However, this might not be practical
if the operator does not have time to provide feedback (e.g., a time-critical mission
with a heavy operator workload) or there would be a significant delay in providing
feedback (e.g., at the end of a multi-day search and rescue mission). In these situ-
ations, even though the operator can not explicitly tell the robot how trustworthy it
is, it would still be beneficial for the robot to infer its trustworthiness.

Without full knowledge about how the operator measures trust or the necessary
internal information to actually compute the trust value, the robot needs to rely on
observable evidence of trust. As we discussed previously, there are numerous factors
that have been found to influence a human’s trust in a robot (Oleson et al, 2011). If
the robot can directly observe some of these factors, it can attempt to estimate its
own trustworthiness. However, some factors may not be easily observable or have
clear models of how they influence trust (e.g., the physical appearance of the robot).

One factor that is observable to the robot and has been found to be the strongest
indicator of human-robot trust is the robot’s performance (Hancock et al, 2011;
Carlson et al, 2014). The inverse trust estimate we present is based on the robot’s
performance and uses the number of times the robot completes an assigned task,
fails to complete a task, or is interrupted while performing a task. The robot as-
sumes that the operator will be satisfied with any completed tasks (i.e., the robot is
performing well) and unsatisfied when tasks are failed or must be interrupted (i.e.,
the robot is performing poorly1). Task completion and interruption have been found
to align with with changes in operator trust (based on user feedback (Kaniarasu et al,
2013) and post-run surveys (Kaniarasu et al, 2012)), so it serves as a viable option
for the robot to estimate its own trustworthiness.

Our inverse trust estimate monitors whether trust is increasing, decreasing, or
remaining constant while the current behavior B′ is being used by the robot. We
estimate this value as follows:

TrustB′ =
n

∑
i=1

wi× cmdi,

where there were n commands issued to the robot while it was using the behavior
B′. If the ith command (1 ≤ i ≤ n) was interrupted or failed it will decrease the

1 An interruption could also be a result of the operator identifying a more important task for the
robot to perform or failures could be the result of unachievable tasks. The robot works under the
assumption that those situations occur rarely and most failures/interruptions are a result of poor
performance.



Learning Trustworthy Behaviors Using an Inverse Trust Metric 7

trust estimate and if it was completed successfully it will increase the trust esti-
mate (cmdi ∈ {−1,1}). The ith command also receives a weight wi which denotes
the relative importance of that command (e.g., a command that resulted in poor
performance would likely be given less weight than a command that resulted in
the robot injuring a human). While our inverse trust estimate uses a simple step
function to represent the current estimate of trust, a more complex (or cognitively
plausible) function could be used that more closely aligns with the operator’s actual
trust. However, the additional computation complexity of such a function might not
provide additional benefits if, like with our robot, we seek general trends in trust-
worthiness rather than an exact trust value.

5 Trust-guided Behavior Adaptation

The robot uses the inverse trust estimate to infer if its current behavior is trustworthy,
untrustworthy, or it does not yet know. Since the trust estimate is being updated over
time (after each success, failure, or interruption) the robot continuously monitors the
estimate and compares it to two threshold values: the trustworthy threshold (τT ) and
the untrustworthy threshold (τUT ).

If the trust estimate is between the two threshold (τUT < TrustB′ < τT ), the robot
will not make any conclusions and will continue to monitor its trustworthiness.
However, if the trust estimate reaches the trustworthy threshold (TrustB′ ≥ τT ), the
robot will conclude it has found a sufficiently trustworthy behavior. The robot will
continue to use its current behavior, since it is believed to be trustworthy, but may
continue to measure trustworthiness in case any changes occur (e.g., a new operator
or mission goals). Finally, if the trust estimate falls to or below the untrustworthy
threshold (TrustB′ ≤ τUT ), the robot will conclude that it’s current behavior is un-
trustworthy and should be changed. In this situation, the robot will perform behavior
adaptation to switch to a new behavior.

Figure 1 shows an example of the robot’s estimate of the trustworthiness of its
current behavior. The robot initially starts from a baseline value, since it does not
know if the behavior is trustworthy or untrustworthy, and updates the estimate as
new evidence becomes available. In this example, the robot was issued five tasks to
perform. The robot completed the first two tasks successfully (as indicated by the
increases in the trust estimate), failed or was interrupted during the third task (as
indicated by the decrease in the trust estimate), and then successfully completed the
fourth and fifth tasks. The robot’s trust estimate is trending upwards, but since it is
still between the two thresholds it can not conclude if its behavior is trustworthy or
untrustworthy.



8 Michael W. Floyd, Michael Drinkwater, and David W. Aha

Positive 
Trust

Negative 
Trust

Time

Trustworthy threshold

Untrustworthy threshold

Fig. 1 An example of the robot’s trust estimate after being issued five tasks.

5.1 Evaluated Behaviors

When a behavior B is found to be untrustworthy (i.e., the trust estimate reached the
untrustworthy threshold), it is stored as an evaluated pair E that also contains the
time t it took the behavior to be labeled as untrustworthy:

E = 〈B, t〉

The motivation for storing the time it took to label a behavior as untrustworthy, in-
stead of only storing the behavior itself, is that it allows for a comparison between
untrustworthy behaviors. This permits a relative level of untrustworthiness so that
we can say one behavior is closer to being trustworthy than another. A behavior
B′ that reaches the untrustworthy threshold more quickly than another behavior B′′

(t ′ < t ′′) is defined to be less trustworthy than the other. This is based on the as-
sumption that if a behavior took longer to reach the untrustworthy threshold then it
was either performing some trustworthy actions, was not failing as quickly, or was
appearing to behave trustworthy for longer periods of time.

The robot maintains a set Epast of previously evaluated behaviors. This set, which
is initially empty, is extended as the robot evaluates more behaviors. If the robot has
found n behaviors to be untrustworthy then Epast will contain n evaluated behaviors
(Epast = {E1,E2, . . . ,En}). However, if the robot determines that a behavior B f inal is
trustworthy (i.e., the trustworthy threshold was reached), that behavior will not be
added to the set and the robot will not change its behavior.

The set Epast can be thought of as the search path that was taken to find the
trustworthy behavior B f inal . This can potentially be useful if the robot is performing
a new search for a trustworthy behavior (i.e., because of a new operator, mission, or
context) and is able to reuse information from the previous search. For example, if
two operators find similar behaviors untrustworthy in a similar amount of time, they
might also find similar behaviors to be trustworthy.

To make use of information from previous behavior adaptation, we employ case-
based reasoning (CBR) (Richter and Weber, 2013). CBR embodies the idea that sim-
ilar problems tend to have similar solutions. Problem-solution pairs, called cases,



Learning Trustworthy Behaviors Using an Inverse Trust Metric 9

represent examples of concrete problem solving instances and are stored in a case
base. Each case C is a pair containing a problem and its solution. In our context,
the problem is the set of previously evaluated behaviors Epast and the solution is the
final trustworthy behavior B f inal :

C = 〈Epast ,B f inal〉

The case base, which is initially empty, grows each time a new case is created. Since
each case represents a single problem-solving episode (i.e., finding a trustworthy be-
havior for an operator in a given context), the case base represents all of the problem
solving experience that the robot has collected.

5.2 Behavior Adaptation

Behavior adaptation, which we have only described abstractly to this point, is per-
formed when the currently evaluated behavior reaches the untrustworthy threshold
and the robot needs to select a new behavior to perform. The new behavior Bnew
is selected as a function of the set of previously evaluated behaviors Epast and the
robot’s case base CB:

Bnew = selectBehavior(Epast ,CB)

The selectBehavior function (Algorithm 1) searches for a case Ci in CB with a set
of evaluated behaviors that is most similar to Epast . The motivation for this is that if
they have similar problems then they might have similar solutions, so the robot can
adapt its behavior by switching to the final behavior stored in Ci.

Algorithm 1: Selecting a new behavior

Function: selectBehavior(Epast , CB) returns Bnew;

1 bestSim← 0; Bbest ←∅;
2 foreach Ci ∈CB do
3 if Ci.B f inal /∈ Epast then
4 simi← sim(Epast ,Ci.Epast);
5 if simi > bestSim then
6 bestSim← simi;
7 Bbest ←Ci.B f inal ;

8 if Bbest =∅ then
9 Bbest ← modi f yBehavior(Epast);

10 return Bbest ;

The algorithm iterates through each case in the case base (line 2) and checks to
see if the case’s final behavior has already been evaluated (line 3). This check is



10 Michael W. Floyd, Michael Drinkwater, and David W. Aha

done to ensure that behaviors that have already been found to be untrustworthy are
not evaluated again. The sets of evaluated behaviors of the remaining cases are com-
pared to the robot’s current set of evaluated behaviors using a similarity metric (line
4). The most similar case’s final behavior is stored (lines 5-7) and returned to the
robot (line 10). This behavior is immediately used by the robot and the robot begins
measuring the trustworthiness of that behavior. If no similar cases were found (i.e.,
the case base was empty or the final behaviors of all cases have already been eval-
uated), the modifyBehavior function is used to select the next behavior to perform
(line 9).

The modifyBehavior function selects an evaluated behavior Emax that took the
longest to reach the untrustworthy threshold (∀Ei ∈ Epast ,Emax.t ≥ Ei.t). A ran-
dom walk (without repetition) is performed to find a behavior Bnew that requires
the minimum number of changes to Emax.B and has not already been evaluated
(∀Ei ∈ Epast ,Bnew 6= Ei.B). This is based on the assumption that Emax is the least
untrustworthy of the evaluated behaviors and that a slight change might lead to a
more trustworthy behavior. If all possible behaviors have been evaluated and found
to be untrustworthy, the robot will stop adapting its behavior and use Emax.B.

Algorithm 1 relies on calculating the similarity between two sets of evaluated
behaviors (line 4). This similarity (Algorithm 2) is complicated by the fact that the
sets may vary in size. This occurs because the number of evaluated behaviors in each
case is dependent on how long the search took in that instance. Similarly, there is no
guarantee that the same behaviors were evaluated in each set. To account for this, the
similarity function looks at the overlap between the two sets and ignores behaviors
that have only been evaluated in one set. The algorithm goes through each evaluated
behavior in the first set (line 2) and finds the most similar evaluated behavior Emax
in the second set (line 3). The similarity between two behaviors is a function of the
similarity of each behavior component:

sim(B1,B2) =
1
m

m

∑
i=1

sim(B1.ci,B2.ci),

where the similarity function for each behavior component will depend on its spe-
cific type. For example, a behavior component that represents a binary parameter
value would require a different similarity function than a component that represents
which path planning algorithm to use.

If the two evaluated behaviors, Ei and Emax, are sufficiently similar, based on a
threshold λ (line 4), then the similarity of their time components are included in the
similarity calculation (line 5). This ensures that the final similarity value includes
information from only behaviors that have a highly similar counterpart in the other
set. This function will return a high similarity (up to a maximum of 1.0) when
similar behaviors took nearly the same time to reach the untrustworthy threshold
and a low similarity (to a minimum of 0.0) when similar behaviors had a noticeable
difference in the time they took to reach the untrustworthy threshold.



Learning Trustworthy Behaviors Using an Inverse Trust Metric 11

Algorithm 2: Similarity between sets of evaluated behaviors

Function: sim(E1, E2) returns sim;

1 totalSim← 0; num← 0;
2 foreach Ei ∈ E1 do
3 Emax← argmax

E j∈E2

(sim(Ei.B,E j.B));

4 if sim(Ei.B,Emax.B)> λ then
5 totalSim← totalSim+ sim(Ei.t,Emax.t);
6 num← num+1;

7 if num = 0 then
8 return 0;

9 return totalSim
num ;

6 Evaluation

In this section, we evaluate our behavior adaptation technique in a simulated robotic
environment. Two variations of trust-based behavior adaptation are used: case-based
behavior adaptation and random walk behavior adaptation. While we expect both
approaches to allow the robot to adapt to trustworthy behaviors, we will evaluate our
claim that the case-based approach can find trustworthy behaviors more efficiently.

6.1 eBotWorks Simulator

Our evaluation uses the eBotWorks simulation environment Knexus Research Cor-
poration (2013), a multi-agent simulation engine and testbed for unmanned systems.
In eBotWorks, autonomous agents control simulated robotics vehicles and can re-
ceive multimodal commands from human operators. We chose to use eBotWorks
based on its flexibility in autonomous behavior modeling, ability to interact with
agents using natural language commands, and built-in experimentation and data col-
lection capabilities.

In our experiments, we use a single robot that is a wheeled unmanned ground
vehicle (UGV). The robot uses eBotWorks’ built-in natural language processing (for
interpreting user commands), sensing, and path-planning modules. The environment
is composed of landmarks (e.g., roads, various types of terrain) and objects (e.g.,
houses, humans, vehicles, road barriers). The actions performed by the robot are
non-deterministic and the robot also suffers from limited observability and potential
sensor errors.



12 Michael W. Floyd, Michael Drinkwater, and David W. Aha

6.2 Experimental Conditions

Our initial study uses simulated operators to facilitate a larger-scale evaluation than
if real human operators were used2. The simulated operators were selected to rep-
resent a subset of the control strategies used by human operators. Each simulated
operator has unique preferences for how the robot should behave and these prefer-
ences will influence how the robot’s performance is evaluated (i.e., when the opera-
tor allows the robot to complete a task and when it interrupts).

Each experiment is composed of 500 trials and in each trial the robot interacts
with a single simulated operator. At the start of a trial, the robot randomly selects
(with a uniform distribution) initial values for each of its modifiable components.
Throughout the trial, a series of experimental runs occur. Each run involves the op-
erator issuing a single command to the robot and monitoring the robot as it performs
the task. During a run the robot will complete the task, fail to complete the task, or
be interrupted by the operator; it will update its trust estimate accordingly. At the
end of each run the environment is reset and a new run begins. A trial concludes
when the robot has either found a trustworthy behavior or evaluated all possible
behaviors.

The case-based behavior adaptation approach starts each experiment with an
empty case base. A case is stored at the end of a trial if the robot found a trust-
worthy behavior and performed at least one random walk adaptation (i.e., the robot
could not find a solution in its case base so it used the modifyBehavior function).
This case retention strategy is used to prevent adding redundant cases. An added
case can be used during any of the subsequent trials in the experiment.

The robot’s trustworthy threshold was set to τT = 5.0 and its untrustworthy
threshold set to τUT = −5.0. These thresholds were set to allow some fluctuation
between increasing and decreasing trust while still identifying trustworthy and un-
trustworthy behaviors quickly. When calculating the similarity between sets of eval-
uated behaviors, a similarity threshold of λ = 0.95 was used (i.e., behaviors must
be at least 95% similar to be matched).

6.3 Evaluation Scenarios

We selected two scenarios of increasing complexity: movement and patrolling for
threats. While the Movement scenario is a relatively simple task, the Patrol scenario
requires a more complex behavior with a larger set of modifiable components.

2 We plan to validate these findings in a series of user studies.



Learning Trustworthy Behaviors Using an Inverse Trust Metric 13

6.3.1 Movement Scenario

The initial task the robot is required to perform involves moving between two loca-
tions in the environment (Figure 2). The simulated operator issues natural language
commands to tell the robot where to move (e.g., “move to the flag”) and the robot is
responsible for navigating to that location. Three metrics are used by the operators
to assess the robot’s performance:

UGV’s initial location

Goal Location

Humans

Obstacles

Fig. 2 The environment configuration for the Movement scenario.

• Task Duration: The operator has an expectation about the amount of time the
task should take to complete (tcomplete). If the robot does not complete the task
within that time, the operator may, with probability pα , interrupt the robot.

• Task Completion: If the operator determines that the robot has failed to complete
the task (e.g., the robot is stuck or moved to the wrong location), the robot will
be interrupted.

• Safety: The operator may interrupt the robot, with probability pγ , if the robot
collides with any obstacles.

We use three simulated operators in this scenario:

• Speed-focused operator: This operator prefers the robot to move to the destina-
tion quickly regardless of whether it hits any obstacles (tcomplete = 15 seconds,
pα = 95%, pγ = 5%).

• Safety-focused operator: This operator prefers the robot to avoid obstacles re-
gardless of how long it takes to reach the destination (tcomplete = 15 seconds,
pα = 5%, pγ = 95%).

• Balanced operator: This operator prefers a balanced mixture of speed and safety
(tcomplete = 15 seconds, pα = 95%, pγ = 95%).



14 Michael W. Floyd, Michael Drinkwater, and David W. Aha

In this scenario, the robot has two modifiable behavior components: speed and
obstacle padding. Speed, measured in meters per second, relates to how fast the
robot can move. Padding, measured in meters, relates to the distance the robot will
attempt to maintain from obstacles during movement. The set of possible values for
each modifiable component (Cspeed and Cpadding) are based on the robot’s capabili-
ties (i.e., minimum and maximum accepted values with fixed increments):

Cspeed = {0.5,1.0, . . . ,10.0}
Cpadding = {0.1,0.2,0.3, . . . ,2.0}

6.3.2 Patrolling Scenario

In the second scenario, the robot patrols for threats as it moves between two loca-
tions in the environment (Figure 3). At the start of each run, six suspicious objects
are randomly placed in the environment. These suspicious objects represent poten-
tial threats, and between 0 and 3 (inclusive) of them are designated as hazardous
explosive devices (selected randomly with a uniform distribution). The remaining
suspicious objects are not hazardous to the robot or the team.

UGV’s initial location

Goal Location

Suspicious 
Objects

Fig. 3 The environment configuration for the Patrol scenario.

As the robot moves between the start location and the goal location (given by
a natural language command from the operator), it scans for suspicious objects
nearby. When a suspicious object is detected, it pauses its patrolling behavior, moves
toward the object, scans it with its explosives detector, and labels the object as an ex-
plosive or harmless. The robot then resumes its patrolling behavior. The accuracy of
the robot’s explosives detector is a function of how long the robot spends scanning
the object (long scan times result in improved accuracy) and its proximity to the
object (smaller scan distances result in improved accuracy). In addition to the speed



Learning Trustworthy Behaviors Using an Inverse Trust Metric 15

and padding, the scan time, measured in seconds, and scan distance, measured in
meters, are also modifiable components of the robot’s behavior. The possible values
for these are:

Cscantime = {0.5,1.0, . . . ,5.0}
Cscandistance = {0.25,0.5, . . . ,1.0}

In addition to the task duration, task completion, and safety factors described in
the Movement scenario, the simulated operators will also base their decision to in-
terrupt the robot on its ability to successfully identify and label suspicious objects.
An operator will interrupt the robot if it does not scan one or more suspicious ob-
jects (e.g., it drives by without noticing it) or incorrectly labels a harmless object as
an explosive. If the robot incorrectly labels an explosive device as harmless, the ob-
ject will eventually detonate and the robot will fail its task. The robot assigns higher
weight to failures due to missing explosive devices (3 times higher than other fail-
ures or interruptions) because of the danger such failures cause to human teammates
and bystanders.

We use two simulated operators in this scenario:

• Speed-focused operator: The operator prefers that the robot performs the patrol
task within a fixed time limit (tcomplete = 120 seconds, pα = 95%, pγ = 5%).

• Detection-focused operator: The operator prefers the task be performed cor-
rectly regardless of time (tcomplete = 120 seconds, pα = 5%, pγ = 5%).

6.4 Trustworthy Behaviors

We found that both case-based behavior adaptation and random walk behavior adap-
tation resulted in similar trustworthy behaviors for each operator. This includes val-
ues falling within similar ranges of trustworthy values (e.g., for the safety-focused
operator in the Movement scenario the padding never went below 0.4 meters in any
trial) or similar relations between values (e.g., in the Patrol scenario there was a
relation between scan time and scan distance). Furthermore, the trustworthy behav-
iors aligned with what an outside observer would intuitively consider trustworthy
for each operator (e.g., that the speed-focused operator will prefer higher speeds).

The trustworthy behaviors for each of the operators in the Movement scenario
are shown in Figures 4, 5, and 6. Each dot represents the trustworthy behavior found
during a single trial using random walk adaptation. Although 500 trials were per-
formed for each operator, fewer than 500 dots appear in each figure because some
trials converged to the same parameter values. This is more prevalent when case-
based behavior adaptation is performed since the final behaviors stored in cases
occur much more frequently than other behaviors (i.e., those solutions are repeat-
edly reused). However, the trustworthy behaviors found by the case-based approach
fall within the same regions as the random walk behaviors.



16 Michael W. Floyd, Michael Drinkwater, and David W. Aha

The speed-focused operator (Figure 4) causes the robot to converge to higher
speed values regardless of padding while the safety-focused operator (Figure 5) re-
sults in higher padding values regardless of speed. For the balanced operator (Figure
6), both speed and padding must be high.

In the Patrol scenario, there are similar differences in the range of values for cer-
tain behavior components. The speed-focused Patrol operator causes the robot to
converge to higher speed values (speed ≥ 2.0) whereas the detection-focused op-
erator has no such restriction. However, unlike in the Movement scenario there are
also interdependencies among behavior components. For example, none of the trust-
worthy behaviors for the speed-focused Patrol operator have both a medium speed
(2.0≤ speed ≤ 4.0) and high scan time. This is because the robot needs to account
for longer scan times by driving faster. Similarly, there is an interdependence be-
tween scan time and scan distance. The robot only selects a poor value for one of
the modifiable components (low scan time or high scan distance) if it selects a good
value for the other (high scan time or low scan distance).

Fig. 4 Trustworthy behaviors for speed-focused operator in the Movement scenario.

These results fit with the definitions of the simulated operators and our intuition
on the behaviors they would find trustworthy. However, one noticeable exception
occurred in the Movement scenario where behaviors that appear to be trustworthy
are actually not. For both the speed-focused and balanced operators (Figures 4 and
6), no trustworthy behaviors were found when padding = 0.9. For both of these
operators, larger (padding = 1.0) and smaller (padding = 0.8) values were found
to be trustworthy. This occurred in the results for both the case-based and random
walk approaches, and in a follow up evaluation where the robot was forced to use
behaviors with padding = 0.9. The reason this padding value was found to be un-
trustworthy was because of the environment. The padding value resulted in a direct,
but narrow, path to the destination. This required the robot to slow down when nav-
igating through the narrow path and caused it to exceed its time limit (this is why



Learning Trustworthy Behaviors Using an Inverse Trust Metric 17

Fig. 5 Trustworthy behaviors for safety-focused operator in the Movement scenario.

Fig. 6 Trustworthy behaviors for balanced operator in the Movement scenario.

that padding value was not an issue for the safety-focused operator). However, when
the padding was lowered the path became large enough that the robot could drive
through without slowing down. Similarly, when the padding was increased the path
was eliminated so the robot took a slightly longer but much easier path. These results
show that even if we had a general ideal about what behaviors would be considered
trustworthy there is still the possibility of seemingly trustworthy behaviors being
untrustworthy. It is beneficial for the robot to be able to adapt and overcome any
issues that are not anticipated, especially if it operates in a dynamic or unknown
environment.



18 Michael W. Floyd, Michael Drinkwater, and David W. Aha

6.5 Efficiency

The primary difference between the case-based and random walk approaches was
related to how many behaviors needed to be evaluated before a trustworthy behav-
ior was found. Table 1 shows the mean number of evaluated behaviors (and 95%
confidence interval) when interacting with each operator over 500 trials. In addition
to being controlled by a single operator during each experiment, we also examined
a condition where the operator is selected at random (with equal probability) at the
start of each trial. This represents a more realistic situation where the robot is re-
quired to interact with a variety of operators but does not know which particular
operator it is currently interacting with. This variant is labeled as Random and was
performed in both scenarios. The table also shows the number of cases acquired dur-
ing the case-based behavior adaptation experiments (each experiment started with
an empty case base).

Table 1 Mean number of behaviors evaluated before finding a trustworthy behavior.

Scenario Operator Random Walk Case-based Cases Acquired
Movement Speed-focused 20.3 (±3.4) 1.6 (±0.2) 24
Movement Safety-focused 2.8 (±0.3) 1.3 (±0.1) 18
Movement Balanced 27.0 (±3.8) 1.8 (±0.2) 33
Movement Random 14.6 (±2.9) 1.6 (±0.1) 33

Patrol Speed-focused 344.5 (±31.5) 9.9 (±3.9) 25
Patrol Detection-focused 199.9 (±23.3) 5.5 (±2.2) 22
Patrol Random 269.0 (±27.1) 9.3 (±3.2) 25

The case-based approach required significantly fewer behaviors to be evaluated
in all seven conditions (using a paired t-test with p < 0.01). This is because the
case-based approach learns from previous adaptations and uses that information to
quickly find trustworthy behaviors. At the beginning of an experiment, when the
robot’s case base is empty, the case-based approach relies on performing random
walk adaptation. As the case base grows, the number of random walk adaptations
decreases until the agent generally performs a single case-based adaptation before
finding a trustworthy behavior. Even in the random operator experiments when the
case base contains cases from several different operators (three in the Movement
scenario and two in Patrol), the case-based approach can quickly differentiate be-
tween operators and select a trustworthy behavior. Operators with fewer restrictions
on trustworthy behaviors (i.e., a higher percentage of the behavior space is consid-
ered trustworthy), like the safety-focused and detection-focused operators, had the
lowest mean number of adaptations to find a trustworthy behavior.



Learning Trustworthy Behaviors Using an Inverse Trust Metric 19

6.6 Discussion

The primary limitation of the case-based approach is that it relies on random walk
search when it does not have any suitable cases to use. This is especially prevalent
early on when the robot has a small or empty case base. For example, if we consider
only the final 250 trials for each Patrol scenario operator, the mean number of be-
haviors evaluated is lower than the overall mean (4.2 for the speed-focused, 2.8 for
the detection-focused, and 3.3 for the random). This is because the robot performs
the expensive random walk adaptation more often in the early trials, so it performs
more efficiently on the later trials. These expensive adaptations occur infrequently
(only in trials where a case is stored) but increase the mean number of behaviors
that are evaluated.

Two primary solutions exist to reduce the number of behaviors examined dur-
ing case-based behavior adaptation: improving search and seeding the case base.
Random walk search is used because it requires no explicit knowledge about the
domain, task, or operator. However, a more intelligent search that could identify
relations between interruptions and modifiable components would likely improve
adaptation time (e.g., an interruption when the robot is close to objects may require
a change to the padding value). This could reduce the cost of each search, whereas
seeding the case base would attempt to minimize the number of searches required. A
set of initial cases could be provided to the robot so that it would not need to acquire
as many on its own. However, these two solutions introduce their own potential lim-
itations. A more informed search requires introducing domain knowledge, which
may be difficult or expensive to obtain, and seeding the case base requires an expert
to manually author cases (or another method of automatic case acquisition). The
specific requirements of the application domain will ultimately influence whether
fasted behavior adaptation or lower domain knowledge requirements are more im-
portant.

7 Conclusions

In this chapter we have described our approach for inverse trust estimation and how
a robot can use it to adapt its behavior. Rather than traditional trust metrics that
directly measure how much trust an agent has in another agent, our inverse trust
estimate attempts to infer how much trust another agent has in it. As such, it can not
be thought of as an explicit measurement of trust but rather a best-guess estimate
based on observable indicators of trust (e.g., the operator’s response to the robot’s
performance). Our approach relies more on the general trends in its trustworthiness
(increasing, decreasing, or constant) rather than requiring a precise numerical value.

The primary benefit of this behavior adaptation approach is that it does not re-
quire any background knowledge about the tasks, environment, context, or opera-
tors. Each time the robot successfully finds a trustworthy behavior, it stores infor-
mation about the adaptation process and uses that to improve the efficiency of future



20 Michael W. Floyd, Michael Drinkwater, and David W. Aha

adaptations. This allows it to constantly learn behavior adaptation knowledge with
each trial.

We evaluated our trust-guided behavior adaptation algorithm in a simulated
robotics environment by comparing it to a variation that does not learn. In the two
scenarios, Movement and Patrol, both approaches converged to trustworthy behav-
iors but the case-based algorithm required significantly fewer behaviors to be eval-
uated. This is advantageous because the operator is more likely to stop using the
robot the longer the robot behaves in an untrustworthy manner.

Although we have shown the benefits of trust-guided behavior adaptation, sev-
eral areas of future work exist. Although much of our work is based on studies in
human-robot interaction, our initial evaluation has been limited to simulation stud-
ies. An ongoing area of our research is to validate our findings in a series of user
studies. Next, our robot is only concerned with undertrust. In longer scenarios, the
robot should also evaluate situations of overtrust where the operator trusts the robot
too much and allows the robot to behave autonomously even when its performance
is poor. We also plan to expand our inverse trust estimate by incorporating other
trust factors and adding mechanisms that promote transparency (Kim and Hinds,
2006) between the robot and the operator. Transparency would allow information
exchange between the robot and the operator, and allow the robot to verify or re-
fine assumptions it has been using (e.g., which goals the team is currently trying
to achieve). Many of these areas for future work revolve around taking our exist-
ing approach, which requires minimal domain knowledge, and allowing for extra
knowledge to be incorporated if it ever becomes available.

Acknowledgments

Thanks to the United States Naval Research Laboratory and the Office of Naval
Research for supporting this research.

References

Baier JA, McIlraith SA (2008) Planning with preferences. AI Magazine 29(4):25–36
Berlin M, Gray J, Thomaz AL, Breazeal C (2006) Perspective taking: An organizing

principle for learning in human-robot interaction. In: 21st National Conference on
Artificial Intelligence, pp 1444–1450

Biros DP, Daly M, Gunsch G (2004) The influence of task load and automation trust
on deception detection. Group Decision and Negotiation 13(2):173–189

Breazeal C, Gray J, Berlin M (2009) An embodied cognition approach to mindread-
ing skills for socially intelligent robots. International Journal of Robotic Research
28(5)



Learning Trustworthy Behaviors Using an Inverse Trust Metric 21

Carlson MS, Desai M, Drury JL, Kwak H, Yanco HA (2014) Identifying factors
that influence trust in automated cars and medical diagnosis systems. In: AAAI
Symposium on The Intersection of Robust Intelligence and Trust in Autonomous
Systems, pp 20–27

Chen K, Zhang Y, Zheng Z, Zha H, Sun G (2008) Adapting ranking functions to user
preference. In: 24th International Conference on Data Engineering Workshops,
pp 580–587

Desai M, Kaniarasu P, Medvedev M, Steinfeld A, Yanco H (2013) Impact of robot
failures and feedback on real-time trust. In: 8th International Conference on
Human-robot Interaction, pp 251–258

Esfandiari B, Chandrasekharan S (2001) On how agents make friends: Mechanisms
for trust acquisition. In: 4th Workshop on Deception, Fraud and Trust in Agent
Societies, pp 27–34

Hancock PA, Billings DR, Schaefer KE, Chen JY, De Visser EJ, Parasuraman R
(2011) A meta-analysis of factors affecting trust in human-robot interaction.
Human Factors: The Journal of the Human Factors and Ergonomics Society
53(5):517–527

Horvitz E (1999) Principles of mixed-initiative user interfaces. In: 18th Conference
on Human Factors in Computing Systems, pp 159–166

Jian JY, Bisantz AM, Drury CG (2000) Foundations for an empirically deter-
mined scale of trust in automated systems. International Journal of Cognitive
Ergonomics 4(1):53–71

Kaniarasu P, Steinfeld A, Desai M, Yanco HA (2012) Potential measures for detect-
ing trust changes. In: 7th International Conference on Human-Robot Interaction,
pp 241–242

Kaniarasu P, Steinfeld A, Desai M, Yanco HA (2013) Robot confidence and trust
alignment. In: 8th International Conference on Human-Robot Interaction, pp
155–156

Kiesler S, Powers A, Fussell SR, Torrey C (2008) Anthropomorphic interactions
with a robot and robotlike agent. Social Cognition 26(2):169–181

Kim T, Hinds P (2006) Who should i blame? effects of autonomy and transparency
on attributions in human-robot interaction. In: 15th IEEE International Sympo-
sium on Robot and Human Interactive Communication, pp 80–85

Knexus Research Corporation (2013) eBotworks.
http://www.knexusresearch.com/products/ebotworks.php, [Online; accessed
December 1, 2014]

Li D, Rau PP, Li Y (2010) A cross-cultural study: Effect of robot appearance and
task. International Journal of Social Robotics 2(2):175–186

Li N, Kambhampati S, Yoon SW (2009) Learning probabilistic hierarchical task
networks to capture user preferences. In: 21st International Joint Conference on
Artificial Intelligence, pp 1754–1759

Maes P, Kozierok R (1993) Learning interface agents. In: 11th National Conference
on Artificial Intelligence, pp 459–465



22 Michael W. Floyd, Michael Drinkwater, and David W. Aha

Mahmood T, Ricci F (2009) Improving recommender systems with adaptive con-
versational strategies. In: 20th ACM Conference on Hypertext and Hypermedia,
pp 73–82

McGinty L, Smyth B (2003) On the role of diversity in conversational recommender
systems. In: 5th International Conference on Case-Based Reasoning, pp 276–290

Muir BM (1987) Trust between humans and machines, and the design of decision
aids. International Journal of Man-Machine Studies 27(56):527–539

Oleson KE, Billings DR, Kocsis V, Chen JY, Hancock PA (2011) Antecedents of
trust in human-robot collaborations. In: 1st International Multi-Disciplinary Con-
ference on Cognitive Methods in Situation Awareness and Decision Support, pp
175–178

Richter MM, Weber RO (2013) Case-Based Reasoning - A Textbook. Springer
Sabater J, Sierra C (2005) Review on computational trust and reputation models.

Artificial Intelligence Review 24(1):33–60
Saleh JA, Karray F, Morckos M (2012) Modelling of robot attention demand in

human-robot interaction using finite fuzzy state automata. In: International Con-
ference on Fuzzy Systems, pp 1–8

Schlimmer JC, Hermens LA (1993) Software agents: Completing patterns and con-
structing user interfaces. Journal of Artificial Intelligence Research 1:61–89

Shapiro D, Shachter R (2002) User-agent value alignment. In: Stanford Spring Sym-
posium - Workshop on Safe Learning Agents


